
Smart Contract Audit SMART CONTRACT SECURITY AUDIT

Contract Audit | 1

This report presents the results of our engagement with
DefiXFinance to review all DefiXFinance and DefiXFinance Family
smart contracts.

23

Xsec Finance concluded that there were no security threats. He recommends further testing to verify extended safety and correctness within
the context of all contracts. External threats such as economic attacks and oracle attacks and inter-contract functions, calls, should be tested
for expected logic, state, and safety.

1 | EXECUTIVE OVERVIEW

Document Revision History

Make sure smart contract functions are used.

Identify security concerns with smart contracts.

1.1 | Introduction

DefiXFinance's staking implementation platform is called DefiStaking. Xsec Finance was hired by DefiXFinance to perform a security audit of
their DefiStaking smart contracts. The audit began on February 14th 2023 and ended on April 23rd 2023. The security audit was performed on
the Smart Contract EasyFi Staking Smart Contract.

Although the security audit was successful, it only covered the essential elements. This is due to resource and time constraints. It is important
to highlight the best practices in secure smart-contract development.

1.2 | Audit Summary

DefiXFinance provided Xsec Finance with a week to complete the engagement. They also assigned a full-time security engineer to inspect the
security of the smart contracts. The security engineers are experts in smart-contract security and advanced penetration testing. They also have
deep knowledge about multiple blockchain protocols.

This audit is designed to accomplish the following:

Version DateModification

0.1

0.2

1.0

1.1

Document Creation

Document Edits

Final Edits

Remediation Plan

12/04/2023

18/04/2023

20/04/2023

23/04/2023

Author

Johanne Blake

Johanne Blake

David Bhanke

David Bhanke

Contact

Contact EmailCompany

Stephen Urgue

Saufi Yuriv

Khalid Wvyne

Byori Vlad

Xsec Finance

Xsec Finance

Xsec Finance

Xsec Finance

stephen.urgue@xsec.finance

saufi.y@xsec.finance

khalid.w@xsec.finance

byori.v@xsec.finance

April 2023

Likelihood - Risk Scale

5 - It is almost certain that an incident will happen.

4 - Very high chance of an incident.

3 - The long-term potential for a security incident

2 - Very low chance of an incident.

1 - A very unlikely problem will cause an incident.

Risk Scale - Impact

5 - May cause irreparable and devastating loss.

4 - Can cause significant loss or impact.

3 - This may cause a partial or complete loss for many.

2 - May cause temporary loss or impact.

1 - May have a minimal or non-noticeable effect.

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

These two values are combined to calculate the risk level, with 10 being highest.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

Smart Contract Audit SMART CONTRACT SECURITY AUDIT

Contract Audit | 2

This report presents the results of our engagement with
DefiXFinance to review all DefiXFinance and DefiXFinance Family
smart contracts.

23

Xsec Finance ranks vulnerabilities and issues based on the risk assessment method. This methodology measures the LIKELIHOOD for a security
incident and the IMPACT should it occur. This framework is used to communicate the nature and impact of technology vulnerabilities. The
quantitative model allows for repeatable, accurate measurement and allows users to see the vulnerability characteristics that were used to
generate the Risk Scores. A risk level for each vulnerability will be calculated using a scale from 5 to 1, with 5 representing the greatest
likelihood or impact.

Risk Methodology

To balance efficiency, timeliness, practicality and accuracy, Halborn used a combination manual and automated security testing. These phases
and the associated tools were used throughout this audit.

1.3 | Test Approach & Methodology

Research into architecture and its purpose.

Walkthrough and manual code reading for Smart Contracts

Graphing out functionality and contract logic/connectivity/functions (solgraph)

Manual Assessment of safety and use for critical Solidity variables and functions. This is to determine any arithmetic-related vulnerability
classes.

Static Analysis for security for scoped contracts and import functions. (Slither)

Testnet deployment (Truffle, Ganache)

April 2023

Smart Contract Audit SMART CONTRACT SECURITY AUDIT

Contract Audit | 3

This report presents the results of our engagement with
DefiXFinance to review all DefiXFinance and DefiXFinance Family
smart contracts.

23

2 | ASSESSMENT SUMMARY & FINDINGS OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 0 2 4

Likelihood

Impact (Hal-01)
(Hal-02)

(Hal-03)
(Hal-04)
(Hal-05)

(Hal-06)

Security Analysis DateRisk Level

Pragma Version Deprecated

Floating Pragma

Missing Bound Check

Integer Overflow

No Test Coverage

Documentation

Low Solved

Low Solved

Informational

Informational

Informational

Informational

Solved - 16/04/2023

Solved - 16/104/2023

Solved - 18/04/2023

Solved - 18/04/2023

Solved - 20/04/2023

Solved - 20/04/2023

April 2023

3 | FINDINGS & TECH DETAILS

3.2 | (Hal-02) Floating Pragma LOW

Description

Smart contract DefiStaking.sol uses floating pragma ^0.5.16. The lock helps ensure contracts are not accidentally deployed with another
pragma. An outdated pragma might have bugs that negatively affect the contract system, or newer pragma versions could have security
vulnerabilities.

Risk Level

Likelihood - 1

Impact - 3

Smart Contract Audit SMART CONTRACT SECURITY AUDIT

Contract Audit | 4

This report presents the results of our engagement with
DefiXFinance to review all DefiXFinance and DefiXFinance Family
smart contracts.

23

3.1 (Hal-01) Pragma Version Deprecated LOW

Description

The current version of the contract is pragma ̂ 0.5.16. This version is functional and can be used to mitigate security issues such as SafeMath.sol
or ReentrancyGuard.sol. However, it increases the risk to the integrity and long-term sustainability of the solidity code.

Code Location

Risk Level

Likelihood - 1

Impact - 3

Recommendations

Plan For Remediation

Pragma version upgraded to 0.7.6. Solved

The current version of pragma is 0.8.6 at the time this audit was conducted. Use the latest and most tested pragma version whenever possible

to benefit from new features such as checks and accounting as well as preventing insecure code use. (0.6.12)

Code Location

April 2023

Smart Contract Audit SMART CONTRACT SECURITY AUDIT

Contract Audit | 5

This report presents the results of our engagement with
DefiXFinance to review all DefiXFinance and DefiXFinance Family
smart contracts.

23

Recommendations

Plan For Remediation

Pragma version locked at 0.7.6 Solved

3.3 | (Hal-03) Missing Bound Check INFORMATIONAL

Description

Code Location

NotifyRewardAmount() calculates rewardRate by dividing reward by rewardDuration. To calculate rewardRate, reward.add (leftover) must be
divided by rewardsDuration. RewardRate is 0.01 if both the denominator and numerators are greater than each other.

You might want to lock the pragma version. A floating pragma is not recommended for production. The sign (), which is used to lock the pragma
version, must be removed. You can lock the pragma in two places: truffle-config.js in Truffle framework and hardhat.config.js in HardHat
framework.

April 2023

Smart Contract Audit SMART CONTRACT SECURITY AUDIT

Contract Audit | 6

This report presents the results of our engagement with
DefiXFinance to review all DefiXFinance and DefiXFinance Family
smart contracts.

23

Risk Level

Likelihood - 1

Impact - 2

3.4 | (Hal-04) Integer Overflow INFORMATIONAL

Description

NotifyRewardAmount() calculates rewardRate by dividing reward by rewardDuration. To calculate rewardRate, reward.add (leftover) must be
divided by rewardsDuration. RewardRate is 0.01 if both the denominator and numerators are greater than each other.

RISK ACCEPTED. RewardsDuration is based upon UNIX timestamp. The reward is in wei (token with decimals 6,8,18 included). Reward tokens
will never be lower than 1000 1000,000,000 (for 1 year) will be the minimum case (Reward token having 6 decimals and a duration of one year)

Recommendation

Remediation Plan

April 2023

Smart Contract Audit SMART CONTRACT SECURITY AUDIT

Contract Audit | 7

This report presents the results of our engagement with
DefiXFinance to review all DefiXFinance and DefiXFinance Family
smart contracts.

23

Code Location

Risk Level

Likelihood - 1

Impact - 2

April 2023

Smart Contract Audit SMART CONTRACT SECURITY AUDIT

Contract Audit | 8

This report presents the results of our engagement with
DefiXFinance to review all DefiXFinance and DefiXFinance Family
smart contracts.

23

To cover all possible scenarios, we recommend that you run as many test cases and as many smart contracts as possible.

Recommendations

Plan For Remediation

RISK ACCEPTED. The contract will determine the reward amount at deployment.

Plan For Remediation

Xsec Finance Team increased test coverage. Solved

https://github.com/mochajs/mocha

https://github.com/chaijs/chai

https://docs.openzeppelin.com/learn/writing-automated-tests

References:

Risk Level

Likelihood - 1

Impact - 2

3.5 | (Hal-05) No Test Coverage INFORMATIONAL

3.6 | (Hal-05) No Test Coverage INFORMATIONAL

Description

Smart contracts are not like traditional software and cannot be modified unless they are deployed with a proxy contract. To ensure that the code is
correct before deployment, it is recommended to run unit and functional tests. Mocha and Chai can be used to run unit tests in smart contract
contracts. Mocha is a Javascript framework to create synchronous and/or asynchronous unit test cases. Chai is an assertion library that can be
used for custom unit testing.

To ensure that the smart contract covers all possible scenarios, we recommend running as many test cases and as many as possible.

Recommendation

The documentation provided by EasyFi is incomplete. The documentation in the GitHub repository, for example, should contain a walkthrough of
how to deploy and test smart contracts.

Description

April 2023

Smart Contract Audit SMART CONTRACT SECURITY AUDIT

Contract Audit | 9

This report presents the results of our engagement with
DefiXFinance to review all DefiXFinance and DefiXFinance Family
smart contracts.

23

For greater ease, consider updating documentation in Github

Contracts are tested and deployed. To ensure that the set-up steps are correct due to technical assumptions, a non-developer or QA resource

should be involved.

Recommendations

Plan For Remediation

The DefiXFinance Team documented every stage of deployment. Solved

4.1 | Static Analysis Report

Description

To increase coverage in certain areas of the scoped contract, Halborn used automated testing techniques. Slither, a Solidity static analytics
framework, was one of the tools used. Halborn checked all contracts in the repository. He was then able to compile them into the correct abi and
binary formats. This tool allows you to statically verify the mathematical relationships between Solidity variables in order to detect inconsistent or
invalid usage of contracts' APIs throughout the entire code-base.

4.2 | Automated Security Scan

Description

To assist in detecting well-known security problems and identify low-hanging fruits on targets for this engagement, Xsec Finance used automated
security scans. MythX was used as a security analysis tool for Ethereum smart contracts. MythX ran a scan of the testers' machines and sent the
results to the analyzers for any vulnerabilities. Below are only security-related findings.

4 | AUTOMATED TESTING

April 2023

We look for immediate mitigations that live deploys can take and then we recommend the requirements for remediation engineering to be used in
future releases. Developers and deployment engineers should review the mitigation and remediation recommendations. Successful mitigation and
remediation are ongoing collaborative processes after we have delivered our report.

1.4 | Suggested Solutions

Smart Contract Audit SMART CONTRACT SECURITY AUDIT

Contract Audit | 10

This report presents the results of our engagement with
DefiXFinance to review all DefiXFinance and DefiXFinance Family
smart contracts.

23

We prefer to work in a transparent manner and make our reviews a team effort. Our security audits aim to improve the quality and provide
sufficient remediation to protect users. This is how we conduct our security audits.

We manually review all code to identify any possible issues in code logic, error handling protocol and header parsing, cryptographic mistakes,
random number generators, and code logic. We also look for areas where more defensive programming might reduce the risk of future errors and
speed up future audits. While our main focus is on in-scope code, dependency code and behavior are also examined when they are relevant to a
specific line of investigation.

1.1 | Manual Code Review

Our audit methods included manual code analysis, user interface interaction and whitebox penetration testing. To get a good understanding of the
functionality of the software under review, we look at the web site. Then, we meet with the developers to get a better understanding of their vision
for the software. We then install the software and explore the roles and interactions of the users. We also brainstorm attack surface and threat
models while we do this. We review design documentation, look at audit results, search to find similar projects, inspect source code dependencies
and skim open issues tickets.

1.2 | Vulnerability Analysis

5 | OUR METHODOLOGY

Audit of smart contracts has been done in accordance to industry best practices. This includes cybersecurity vulnerabilities and issues in
smart-contract source code. Details of these are disclosed in the Source Code.

The audit does not make any statements or warranties about the security of the code because the number of test cases is unlimited. The audit
cannot also be considered a complete assessment of the utility and safety, bugfree status, or any other statements about the contract. We have
tried our best to produce this report and conduct the analysis. However, you shouldn't rely solely on it. We recommend that you do several
independent audits as well as a public bug bounty program in order to ensure smart contract security.

0

2.1 | Disclaimer for Xsec Finance Auditors

6 | DISCLAIMERS

We use a conservative and transparent approach to analyzing security vulnerabilities and ensuring that they are addressed. We immediately create
an Issue entry in this document for any potential issue that is identified. However, we are not yet able to verify the impact or feasibility of the issue.
We document our suspicions early, even if it later turns out to be not exploitable vulnerabilities. This is conservative. The process involves first
documenting suspicions with unresolved queries, and then verifying the issue via code analysis, live experimentation or automated tests. We aim
to provide log captures, screenshots and test code as proof of our findings, which is why code analysis is the most uncertain. The feasibility of an
attack on a live system is then assessed.

1.3 | Documenting the Results

April 2023

Smart Contract Audit SMART CONTRACT SECURITY AUDIT

Contract Audit | 11

This report presents the results of our engagement with
DefiXFinance to review all DefiXFinance and DefiXFinance Family
smart contracts.

23

Blockchain platforms are used to deploy and execute smart contracts. Hackers can target the platform, its programming language and any
software that is related to smart contracts. The audit cannot guarantee the security of audited smart contract.

2.1 | Technical Disclaimer

April 2023

