
Summary

Scope

The Origin Protocol team asked us to review and audit several additions to their Origin Dollar smart contracts. Below we

present our results.

We audited the OriginProtocol/origin-dollar repository at the bfe0ac8e5d7c05b9bf1021fafb25e0aed8a6ed45 commit.

In scope were the following contracts in the contracts/contracts directory:

Type
DeFi – Rebasing stablecoin

Timeline
From 2022-10-03 To 2022-10-14

Languages
Solidity

Total Issues
14 (9 resolved, 1 partially resolved)

Critical Severity Issues
0 (0 resolved)

High Severity Issues
0 (0 resolved)

Medium Severity Issues
1 (1 resolved)

Low Severity Issues
9 (5 resolved, 1 partially resolved)

Notes & Additional Information
4 (3 resolved)

SMART CONTRACT AUDIT

System overview

Security model and trust assumptions

Origin Dollar (OUSD) is an ERC-20 compliant stablecoin backed by USDT, USDC, and DAI. Users can mint OUSD by deposit-

ing any of these assets to the system’s vault, to later be invested in different strategies, such as AAVE and Compound

lending pools, or the Curve 3Pool pool. The accrued interest, fees generated and reward tokens collected from these

strategies are then distributed among OUSD holders through a rebasing mechanism, increasing their overall OUSD balance.

To learn more about how the system works and how strategies are managed, refer to the previous audit report.

The audited commit introduces two new strategies for generating yield: The Convex Generalized Meta Strategy and the

Convex OUSD Meta Strategy. Both take advantage of the Convex Finance platform to increase the yield on stablecoin

deposits in the Curve system.

In particular, depositors to the Curve 3Pool receive 3CRV tokens to represent their share of the pool. Those tokens are then

deposited to Curve’s OUSD-3CRV metapool to potentially earn trading fees. Finally, the metapool LP tokens (OUSD3CRV-f)

are deposited in Convex Finance to earn staking rewards. Naturally, the process is reversed when the strategies need to

return the stablecoins to the vault.

The difference between the strategies is that OUSD Meta Strategy also mints new (uncirculated) OUSD to deposit into the

OUSD-3CRV metapool to keep the metapool balanced (with some limits in extreme scenarios). Those funds are burned

when they are withdrawn, so they should not be part of the circulating supply unless they are bought from the metapool

directly. Additionally, OUSD tokens held by a contract (in this case the metapool) are non-rebasing by default, so any yield

generated would not be distributed to the uncirculated tokens.

While completing the audit fixes, the Origin team identified and alerted us to another issue.

The BaseConvexMetaStrategy contract initializes the maximum slippage when the variable is declared. This will set the

variable in the implementation contract but not in the proxy contract where it is needed. The maximum slippage will

default to zero, which will be excessively strict when redeeming metapool tokens and could cause the withdrawal to fail

until the variable is updated.

This was fixed in commit 1c524c97ac4e70dbf09447313643a2a53e2da35d.

Minimal modifications were made to the Origin protocol governance system. Therefore, the assumptions are nearly identical

to those listed in the published Origin Governance Audit and Origin Dollar Audit reports.

Slight deviations of note include:

The rewards are now collected from the strategies by a “harvester” address, set by the governor on a per-strategy

basis. As before, the governor can set the reward tokens arbitrarily which lets them withdraw any funds held by the

strategies.

The new strategies invest funds in Curve’s OUSD-3Crv metapool and the Convex Finance Booster contract, and they

are granted infinite allowance to spend the strategies’ assets. Therefore, the new strategies rely on these investment

contracts to function correctly and safely.

Client-reported finding

SMART CONTRACT AUDIT

Here we present our findings.

It does not account for tokens that could be sent to the contract directly.

It assumes the contract has received the expected number of tokens.

When the amount of tokens to deposit is already known, that value can be used instead of the contract’s balance.

Alternatively, only the difference needs to be minted in the first place.

When the amount of tokens to receive is already known, it can be used as the minimum withdrawal amount.

Findings

Medium Severity

Low Severity

There are several instances throughout the code base where the strategies use their token balance without validating it

matches the expected value. This has two implications:

The most important example is both instances when the ConvexOUSDMetaStrategy attempts to burn all its OUSD tokens.

This would fail if its balance exceeds the acceptable range, which could occur if someone sends OUSD directly to the

strategy.

Lastly, in the interest of local reasoning and robustness, consider explicitly confirming that the Curve protocol returns the

expected number of tokens, rather than assuming it respects the stated minimum thresholds.

Update: Fixed in commit 290c68fd25a1f2967324948398227684ec834597. The Curve system is still assumed to return the

expected number of tokens.

The withdraw function of the BaseCurveStrategy determines the number of 3CRV tokens to burn by using the price to

slightly overestimate the desired value, determining the corresponding amount of stablecoin, and then scaling down the LP

amount linearly to match the required stablecoin value. Instead, consider directly querying the amount of LP tokens to burn

with the calc_token_amount function, and then adjusting for fees. If desired, the amount could be validated with the

calc_withdraw_one_coin function.

Update: Acknowledged, not resolved. The Origin team stated:

calc_token_amount does not account for curve fees. Correctly accounting for way curve fees are calculated ends up

being more code than the current method.

Additionally, in the interest of predictability:

Implicit balances

Complicated accounting

SMART CONTRACT AUDIT

The withdraw function equivocates between the mapping and the local variable in the event emission and balance

check.

The checkBalance function uses the mapping to retrieve the platform token balance but then assumes the asset is

worth one third of the value. This only makes sense if there are three assets mapping to the same platform token.

There are code comments that explicitly account for the possibility that not all assets are mapped correctly.

Inconsistent reference to pToken

Inconsistent rebase bound

Incorrect event parameter

The BaseCurveStrategy has two mechanisms to refer to the 3CRV token: the generic mapping it inherits from Initializ-

ableAbstractStrategy and its own local variable. We believe the local variable was introduced as a simplification, because all

three assets correspond to the same platform token, but it is used inconsistently. In particular:

Consider using the local variable throughout the contract and disabling the ability to set the mapping individually.

Update: Partially fixed in commit 49ee19e1d6bbc623bb88027c997658d21fe32390. Some functions (like safeApproveAllTo-

kens) still use the mapping.

When minting OUSD tokens, there will be a rebase if the amount equals the threshold. However, when redeeming or

burning tokens, the amount needs to be strictly greater than the threshold. Consider using an exclusive (or inclusive) bound

throughout the code base.

Update: Fixed in commit e574b38ba22ae95302b9386d06aed980337c07bc.

Both emissions of the Deposit event in the BaseCurveStrategy contract use the platformAddress (after redundantly casting

it to an address type) as the _pToken parameter. Consider using the pTokenAddress variable instead.

Update: Fixed in commit 381fdfaed1ed247167f4f2182a52c27ed9b8dd05.

SMART CONTRACT AUDIT

Misleading comments

The code base contains several misleading comments:

The collectRewardTokens function of the BaseConvexMetaStrategy contract claims to send rewards to the vault, but

it sends them to the harvester address.

The depositAll function of the BaseCurveStrategy contract does not accurately describe how all descendant

contracts retrieve the 3CRV token address.

The comment explaining how much OUSD to add in the ConvexOUSDMetaStrategy states that it could mint less

OUSD if the metapool has too much, but it always adds at least as much OUSD as 3CRV. Moreover, it claims the

metapool will end up balanced. However it won’t add more than twice as much OUSD (by value) than 3CRV, even if

that’s necessary to balance the metapool.

The mintForStrategy function of the VaultCore contract claims that it cannot use the nonReentrant modifier

because it clashes with the BaseCurveStrategy contract’s modifier. However, the two modifiers do not interact with

each other. Instead, it is the nonReentrant modifier on the allocate function that would cause the conflict.

The @param comment describing the _lpWithdraw function of the ConvexOUSDMetaStrategy contract claims it is

the number of Convex LP tokens to redeem, but it is the number of 3CRV tokens to retrieve.

The setMaxWithdrawalSlippage function of the BaseConvexMetaStrategy contract is missing its @param statement.

Consider including it.

Update: Fixed in commit 689d527252ec78932d4bf422be3ac6b8245a777d.

Consider correcting these comments.

Update: Fixed

in commit 4b7f103658656a16d160231f96f36ac1d4336dfd and commit d7ddbb3a2c261ed600d99bc73377de53b4859ad5.

We need to handle USDT’s non-standard return value (no boolean), and safeApprove provides a clean way of doing

this..

The BaseCurveStrategy contract and the BaseConvexMetaStrategy contract provides functionality to grant addresses an

infinite allowance. However, they bypass the safety mechanism in safeApprove that prevents changing the allowance

between two non-zero values, which is intended to prevent front-running attacks that spend both allowances. In this case,

since the intended allowance is unlimited, the possibility of front-running is irrelevant.

Nevertheless, we consider it bad practice to use a safety mechanism while bypassing its additional requirements. Consider

using the standard approve function and validating that it succeeds.

Update: Acknowledged, not resolved. The Origin team stated:

Missing docstrings

Misusing safeApprove

SMART CONTRACT AUDIT

The InitializableAbstractStrategy contract reserves 98 slots, bringing the total storage usage up to 106.

The BaseCurveStrategy has no storage gaps.

The BaseConvexMetaStrategy contract reserves 30 slots, bringing the total storage usage up to 39.

Consider using consistently sized storage gaps in all contracts that have not yet been deployed. For contracts that cannot be

changed, because they are ancestors of live contracts in the code base, consider documenting the unusual storage size to

facilitate safe upgrades.

Update: Fixed in commit e30022cd9fb7e815cb16ffd09a21c276f3980250.

The proxy contracts that represent the strategies should be initialized before they are used. However, it is good practice to

initialize the implementation contracts as well to reduce the attack surface by preventing them from being initialized in the

future. Consider adding a constructor that calls the initializer to the ConvexOUSDMetaStrategy and ConvexGeneralized-

MetaStrategy contracts.

Update: Acknowledged, not resolved. The Origin team stated:

There are some occurrences of literal values with unexplained meaning in Origin’s contracts. For example, line 135 in

BaseConvexMetaStrategyand line 212 in BaseCurveStrategy.sol. Literal values in the code base without an explained mean-

ing make the code harder to read, understand, and maintain. This makes the code harder to understand for developers,

auditors, and external contributors alike.

Developers should define a constant variable for every magic value used (including booleans), giving it a clear and self-ex-

planatory name. Additionally, for complex values, inline comments explaining how they were calculated or why they were

chosen are highly recommended. Following Solidity’s style guide, constants should be named in UPPER_-

CASE_WITH_UNDERSCORES format.

Update: Fixed in commit 46cfa3a8e0c9511b987234978178d80248215664.

Our implementation contracts have the owner set in the constructor at creation and outsiders cannot initialize them.

We will transfer ownership of implementation contracts to the governance system.

When using the proxy pattern for upgrades, it is common practice to include storage gaps on parent contracts to reserve

space for potential future variables. The size is typically chosen so that all contracts have the same number of variables

(usually 50). However, the code base uses inconsistent sizes and does not always include a gap at all. In particular:

Inconsistent storage gaps

Uninitialized implementations

Notes & Additional Information

Constants not declared explicitly

SMART CONTRACT AUDIT

The state variables crvCoinIndex and mainCoinIndex in the BaseConvexMetaStrategy contract do not have an explicit

visibility modifier. In the interest of clarity, consider including it.

Update: Fixed in commit 9d794d1e682dad35d61dd84b906b6168179a46ec.

Consider indexing the VaultCore events to assist the task of off-chain services searching and filtering for specific events.

Update: Acknowledged, not resolved The Origin team stated:

The BaseCurveStrategy has an unnecessary import statement. Consider removing it.

Update: Fixed in commit ea5154feaa97b64a36bd49d83d38be6b9d526524.

No critical or high severity issues were found in the code base. Several minor vulnerabilities have been found and recom-

mendations and fixes have been suggested.

We’re going to keep our existing event signatures for backwards compatibility. For the new event (OusdMetaStrategy

Updated), we’ll keep it consistent with the existing events.

Implicit visibility

Unindexed events

Unused import

Conclusions

SMART CONTRACT AUDIT

Due to the high number of interactions between the system and third-party protocols through strategies such as AAVE,

Curve and Compound, as well as the strong trust assumption towards the contract owner, the strategist and harvester roles,

we recommend implementing monitoring for all sensitive actions, including but not limited to:

Monitor the mint, mintForStrategy, redeem, burnForStrategy functions and any other function called directly or

indirectly by a user, checking that the values returned or minted by 3rd party protocols are within certain well-defined

boundaries (otherwise, consider them as suspicious transactions). This should include amount of cTokens, aTokens,

 3CRV LP tokens and OUSD-3CRV LP tokens, given the amount of collateral being deposited.

Monitor the health of 3rd party protocols to identify unusual situations that may put protocol funds at risk, including

unusually large or frequent liquidations or unbalanced pools.

Monitor all the functions that implement onlyGovernor, onlyHarverster, onlyVaultOrGovernorOrStrategist, and onlyGove-

norOrStrategist to ensure that all admin actions are authorized by the team and that the values they set are in line with

their expectations.

Appendix

Monitoring Recommendation

SMART CONTRACT AUDIT

