
Summary

Scope

The Origin Protocol team asked us to review and audit several additions to their Origin Dollar smart contracts. Below we

present our results.

We audited the “neptune-mutual-blue/protocol” repository at the “73fc82fbe0d1388867b7df669983fe42760daeb1” commit.

In scope were the following contracts:

Type
DeFi

Timeline
From 2022-07-18 To 2022-07-29

Languages
Solidity

Total Issues
45 (33 resolved, 6 partially resolved)

Critical Severity Issues
1 (1 resolved)

High Severity Issues
1 (1 resolved)

Medium Severity Issues
5 (1 resolved, 2 partially resolved)

Low Severity Issues
10 (8 resolved, 2 partially resolved)

Notes & Additional Information
26 (20 resolved, 2 partially resolved)

Client-Reported Issues
2 (2 resolved)

SMART CONTRACT AUDIT

System overview

Updates from Phase 1 Audit

The UMA Data Verification Mechanism (DVM) is the ultimate source of truth in the oracle and governance system of the

UMA Protocol. UMA’s purpose is to serve as a trustworthy oracle for price requests of arbitrary assets. While the majority of

price requests are handled by the Optimistic Oracle component of the UMA ecosystem, any dispute regarding the suggest-

ed price leads to the price request being escalated to the DVM.

The DVM uses round-based voting in a commit-reveal scheme to resolve requested prices. A price will successfully resolve if

the number of votes exceeds a predefined quorum and more than 50% of votes agree on the same price. Otherwise, a

request is rolled to the next round.

The DVM additionally uses its voting mechanism to make governance decisions, which take the form of a sequence of calls

to given addresses with given calldata to be executed in order. Any change of the parameterization of the DVM (e.g. the

quorum or reward emission) must go through the governance system by proposing the change to the ProposerV2 contract

and in case of acceptance executing it on the GovernorV2 contract.

The VotingV2 system is owned by the GovernorV2 contract and every change of governance parameterization is protected

with the onlyOwner modifier. This ensures that every parameter change needs to enter the system as a governance proposal

via the ProposerV2 contract and receive the majority of votes before taking effect. Privileged roles held by EOAs or multi-sig-

nature addresses are not present in the core system which excludes the DesignatedVotingV2 contract.

The scope of this audit covered DVM 2.0, while the prior Open Zeppelin’s audit covered DVM 1.0. The following changed

between these two major versions:

DVM 2.0 version migrated from a snapshot-based system, which enables UMA token holders to vote to a new system

in which UMA tokens need to be staked within the VotingV2 contract to participate.

DVM 1.0 version emitted rewards in UMA at a fixed rate per vote, which gave malicious actors an incentive to spam

the DVM with unnecessary votes. DVM version 2.0 emits rewards at a fixed rate per time unit and allocates them pro

rata to stakers.

DVM 2.0 version introduced a slashing mechanism on the staked balance, which transfers stake from minority voters

or absentees to majority voters in the case of resolved requests to incentivize participation in the voting process and

the correctness of the result.

DVM 2.0 version introduced an additional feature to remove proposals that are perceived as spam.

Privileged roles

SMART CONTRACT AUDIT

SMART CONTRACT AUDIT

Client-Reported Issues

Medium: Parasitic staking term issue

On August 25th, 2022 as well as September 9th, 2022 the UMA team approached us about two additional issues related to

VotingV2 contract that were not identified as part of the audit. We’ve included our assessment of these two issues, and the

corresponding fixes, below to confirm that they have been resolved.

The VotingV2 system is owned by the GovernorV2 contract and every change of governance parameterization is protected

with the onlyOwner modifier. This ensures that every parameter change needs to enter the system as a governance proposal

via the ProposerV2 contract and receive the majority of votes before taking effect. Privileged roles held by EOAs or multi-sig-

nature addresses are not present in the core system which excludes the DesignatedVotingV2 contract.

This issue allows for a “parasitic” staker to accumulate rewards without having to participate on a vote and without ever

being slashed. The root cause of this is that the slashing mechanism only takes into account the activeStake of a staker

while deciding to slash a user, while the rewards mechanism takes both activeStake and pendingStake into account.

Update: Fixed as of commit fd8cecc6719a7a69d44287b2096866686313593c of pull request #4168.

Privileged roles

On August 25th, 2022 as well as September 9th, 2022 the UMA team approached us about two additional issues related to

VotingV2 contract that were not identified as part of the audit. We’ve included our assessment of these two issues, and the

corresponding fixes, below to confirm that they have been resolved.

Client-Reported Issues

This issue allows for a “parasitic” staker to accumulate rewards without having to participate on a vote and without ever

being slashed. The root cause of this is that the slashing mechanism only takes into account the activeStake of a staker

while deciding to slash a user, while the rewards mechanism takes both activeStake and pendingStake into account.

Update: Fixed as of commit fd8cecc6719a7a69d44287b2096866686313593c of pull request #4168.

Medium: Parasitic staking term issue

This issue causes that a price request becomes unresolvable under very specific conditions: If a price request is made, then

the price request rolls over, the only participant who voted on the request was not staked before the request and they had

staked during the reveal phase post roll over.

Then the price request can only be resolved if another voter who staked before the request participates once the request

rolls over again.

Update: Fixed as of commit 2d4fad7cb3525a7faeb88f07953907d3c4515796 of pull request #4139.

Medium: Parasitic staking term issue

SMART CONTRACT AUDIT

Findings

Critical Severity

Here we present our findings.

In the VotingV2 contract the function updateTrackers calls the internal function _updateAccountSlashingTrackers with

parameter indexTo set to the priceRequestIds.length to process the slashing rewards and penalties associated with all

resolved requests.

Within the _updateAccountSlashingTrackers function, a for-loop processes all requests starting with the last request that

has not yet been considered for the respective voter up to priceRequestIds = indexTo - 1. During this process it is ensured

that any slash changes throughout one voting round are first accumulated and only applied at the end of the round. This

ensures that slash rewards and penalties within one round accumulate linearly instead of exponentially. More specifically,

the value activeStake which is directly proportional to any penalties and rewards received is meant to be kept constant

throughout each round, but should be altered by the amount slash between rounds. Finally, the function

_updateAccountSlashingTrackers applies all remaining slash changes to the voter’s activeStake regardless of round bound-

aries.

Additionally, the contract contains a function updateTrackersRange that is callable without authorization, with freely chosen

parameters voterAddress and indexTo which are passed to _updateAccountSlashingTrackers. The use of this function is

necessary whenever the potentially unbounded amount of requests to be processed within the for-loop exceeds the gas

limit.

Issue: Assume that a voter has committed and revealed multiple votes within one round, and that these votes are resolved

and correct. Further assume the voter has not yet called commitVote in any of the following rounds (which will automatical-

ly call _updateTrackers internally). In this scenario, the voter can obtain exponentially more slash rewards than intended by

applying the steps outlined in the Strategy section below. Moreover, this will lead to the total slash reward payout exceeding

the captured slash penalties, in contrast to the expectation of both quantities always being equal. In effect, the staking

balances stored in VotingV2 will no longer be backed by actual UMA tokens contained in the same contract. This will render

many stakers unable to withdraw their stake and equip exploiters with disproportionally large voting power thereby

breaking the core functionality for the UMA ecosystem.

Strategy: To receive exponentially more rewards, a voter must avoid calling updateTrackers which linearly accumulates their

rewards (by computing them against the same, round-wise fix value of activeStake) and instead perform multiple calls to

updateTrackersRange with increasing values of indexTo, such that the function _updateAccountSlashingTrackers processes

each request – in which the voter committed & revealed a correct vote in said round – individually. Because each call

changes the voter’s activeStake, this strategy leads to an exponential accumulation of slashing rewards instead of the

intended roundwise-linear accumulation of rewards.

Consider modifying the respective update functions to ensure that slash values can only be applied round-wise. Additional-

ly, consider implementing a monitoring solution that continuously checks whether the sum of all staked balances is equal

to the amount of UMA contained within the contract and whether this value lies within an expected range. Finally, consider

implementing an emergency mechanism to temporarily suspend the reward system without affecting the contract’s

functionality as a governance and voting system.

Update: Fixed as of commit 18aef110f2bc882a9bfe115bc4ca86f3681f2d4b in pull request #4067.

Slashing mechanism grants exponentially more rewards than expected

SMART CONTRACT AUDIT

Critical Severity

Duplicate Request Rewards

In the VotingV2 contract the _updateAccountSlashingTrackers function contains an optimization that marks unresolved

requests in a prior round (rolled votes) as deleted via an entry in the deletedRequests map. The intention is to reduce gas

consumption as the function will be called for every staker in the system. The logic on line 860 enables future callers to skip

an isolated rolled vote by setting deletedRequests[requestIndex] = requestIndex. It then appends the request identifier to

the priceRequestIds array after updating the lastVotingRound and priceRequestIndex fields on the respective request

struct. The intention behind adding a specific requestIndex to deletedRequests is to prevent it from ever being processed

again and instead allow skipping ahead to a non-deleted element.

However, the request processing logic within _updateAccountSlashingTrackers is not able to correctly handle multiple

rolled votes that appear sequentually in the request array. Consider the following scenario:

The deletedRequests map is initially empty and the previous voting round contained three votes (limiting to 3 just for

simplicity). In this example we will number these request indexes as 1, 2, 3. Assume the the first two votes (index 1 and 2)

have not been resolved and are considered rolled, while index 3 is considered resolved. The first voter to call the _updateAc-

countSlashingTrackers function will go through the array of requests to process and cause a modification of the deletedRe-

quests mapping to

and re-append each request’s identifier to the priceRequestIds array. This creates index 4 and 5 in our example.

The next voter that calls this same function will not process request 1 due to the logic in line 845. Instead, the requestIndex

will be updated to 2. However, there is no additional check ensuring that index 2 has not been deleted as well; the code

assumes this is not the case and index 2 will be processed again instead of being skipped as intended.

Note that during this processing cycle the lastVotingRound field of the request has already been increased to be equal to

currentRoundId. Due to this update, when execution reaches line 858 the if-statement condition will fail thereby allowing

the code to reach the break statement on line 867. Consequently, the entire loop is terminated without increasing the

voter’s lastRequestIndexConsidered and none of the subsequent resolved requests within the same round are processed.

The comment on lines 865-866 indicates that if the break statement on line 867 was reached, “all subsequent requests

within the array must be in the same state”, i.e. being actively voted on. But in this example, index 3 is a subsequent request

that is resolved, and should have slashing computations applied to it, but instead the for-loop terminates. Additionally, the

value of voterStake.lastRequestIndexConsidered is not updated on line 920.

Now, assuming both rolled requests are resolved in the following round, our previous voter calls (indirectly) this function

again. Because lastRequestIndexConsidered was not updated, once again the processing starts at index 1, which is again

skipped on line 845 when it is looked up in the deletedRequests map, and requestIndex is advanced to 2. Execution

continues to line 854, which will evaluate to true because the corresponding request has been resolved, so slashing will be

applied for index 2. On the next cycles of the for-loop, indices 3, 4, and 5 will be processed. Recall however that index 4 and 5

are re-queued elements that reference the same identifiers as index 1 and 2. Therefore, the slashing penalties for index 2 will

be processed twice in this example. In this example all the requests were resolved, but if that had not been the case,

additional duplications would have occurred each time a vote was rolled to the next round.

SMART CONTRACT AUDIT

The underlying bug is the incorrect assumption on line 845 that assumes deletedRequests won’t contain consecutive

unresolved votes. There are several ways the fix can be approached depending on the tradeoff between simplicity vs

efficiency. Consider some possible options:

A straightforward fix that sets requestIndex = deletedRequests[requestIndex] on line 845 (remove the + 1) and then

inserts a continue statement. This would return execution back to line 843 where requestIndex would be incremented

as before, but ensures that the deletedRequests[requestIndex] != 0 test on line 845 is applied to this new index.

A more complex but efficient fix would be to additionally store the inverse mapping to deletedRequest to enable

jumping over adjacent skipped indices in one step by modifying the target of the first index.

Update: Fixed as of commit 8356375e8893d3b0375345b0464ef0fe10d15c26 in pull request #4064 by adopting the first
recommendation.

Medium Severity

Incorrect refund of spamDeletionProposalBond

In the VotingV2.sol contract the spamDeletionProposalBond determines the amount of votingToken the caller transfers to

the contract upon calling signalRequestsAsSpamForDeletion. An amount of votingToken determined by the same variable

is either sent back to the initial requester or to the OracleInterfaces.Store contract upon calling executeSpamDeletion.

Independently, the contract owner is able to call setSpamDeletionProposalBond anytime.

If the owner mistakenly calls setSpamDeletionProposalBond between a spam deletion request and its execution, the value

of the refunded bond will differ from the originally submitted bond, thereby leading to a loss for either the original request-

er or the VotingV2 contract.

Consider adding a new uint256 bond parameter to the SpamDeletionRequest struct to record the bond amount at the

time a specific request was submitted, and using this value during the call to executeSpamDeletion.

Update: Partially fixed in commit 52b32d4e1f6f7262228b7c3d7f1fa00b95c4d4b2 of pull request #4065. Our recommen-
dation has been adopted in the case of a successful spamDeletionProposal. However, in the case of unsuccesful
proposal, the amount sent to the store contract remains affected.

SMART CONTRACT AUDIT

In the SlashingLibrary contract the functions calcWrongVoteSlashPerToken and calcNoVoteSlashPerToken are meant to

return constants representing a slashing percentage per wrong vote or no vote that would counteract the 20% staking APY

under the assumption of 120 yearly votes. Both functions contain commentary with an incorrect mathematical formula to

counteract a 20% APY.

More specifically, the formula outlined in the inline comments

Incorrect refund of spamDeletionProposalBond

uses basic interest instead of compound interest and assumes that a 20% increase will be negated with a subsequent 20%

loss. However, the correct formula to counteract a 20% APY over 120 votes would be

While the current deviation between both values is negligible, applying the correct formula becomes crucially important for

a higher APY and more yearly votes.

Consider updating the documentation to include both the correct mathematical formula and an advisory to check the

inequality

to prevent setting any incentives for staking without participating in votes.

Update: Fixed as of commit 18aef110f2bc882a9bfe115bc4ca86f3681f2d4b in pull request #4067.

In the Staker contract the function setUnstakeCoolDown allows the contract owner to set the unstakeCoolDown variable to

an arbitrarily large uint64 value. This variable controls the time that needs to pass between successful calls to

requestUnstake and executeUnstake. It retroactively applies changes to all users currently within the cooldown phase.

Giving the contract owner full control over setting unstakeCoolDown violates the trust assumptions typically present in a

staking system. Namely, stakers expect to be able to retrieve their stake regardless of operator error or operator malice.

Setting unstakeCoolDown to a very large value would render each user’s stake practically unretrievable.

The intended use of this contract is to be owned by the GovernorV2 contract thereby allowing the affected stakers to control

the unstakeCoolDown through governance proposals, which reduce the likelihood of malice. However, voters who disagree

with a legitimate majority vote to extend unstakeCoolDown will most likely not be able to leave the staking system before

the changes take effect.

Consider validating the input of the setUnstakeCoolDown function against an acceptable maximum cooldown time. Also

consider allowing the retroactive application of a new unstakeCoolDown value only in cases when it acts to decrease the

cooldown time of users who are actively unstaking.

Update: Acknowledged. UMA indicated that the economic incentives between stakeholders make this scenario unlikely.
The increased complexity and gas cost of the suggested recommendation does not appear justified.

Stake can be withheld indefinitely

SMART CONTRACT AUDIT

The VotingV2 contract includes a setMigrated administrative function that sets an associated migratedAddress which stores

the address of a future version of the voting system (e.g. V3).

The contract also includes the onlyIfNotMigrated and onlyRegisteredContract modifiers which restrict its functionality in the

event of a migration. The commitVote and revealVote functions are guarded by the onlyIfNotMigrated modifier, which

prevents voting from occcuring once the migrationAddress has been set. The requestPrice, hasPrice, and getPrice functions

are guarded by the onlyRegisteredContract modifier. In the event of migration, the modifier restricts calls to these functions

to the new Voting contract. Otherwise, the modifier restricts calls to these functions to a set of contracts that are registered

with the Registry contract.

However, there are several concerns with the existing migration design:

To avoid a situation where the voting system cannot be upgraded, consider introducing an upgrade mechanism that allows

for migration in several distinct steps while ensuring that the voting system remains functional at each stage.

Update: Partially fixed in commit 852b60531bb1888d581046a3ccda3a68d4856f33 of pull request #4105. Forwarding price

requests to the old contract have been fixed, while UMA indicated that additional measures to facilitate migration will be

addressed in a future version.

Limitations of contract migration

The onlyRegisteredContract modifier allows forwarding price requests from the contract deployed at migratedAddress

to VotingV2 after migratedAddress has been set, but the onlyIfNotMigrated modifier prevents anyone from voting on

those requests.

Voter tokens are staked on the VotingV2 contract and there is a GAT threshold for voting. If users are directed to migrate

their staked tokens from VotingV2 to the new Voting contract, there may be a transition period where not enough users

are staked on either contract to reach the GAT threshold for voting.

Ideally, contract migration would occur during a time window when there are no active requests. Attempting to

upgrade the contract while price requests are active would result in it not being able to complete the voting process on

those requests due to the disabled state of the commit and reveal functions. However a price request can occur at any

time, and if demand for the voting system increases in the future, it will become more difficult to chance upon a time

window where there is no activity in the voting system, and there is no guarantee that such a window will exist.

SMART CONTRACT AUDIT

The VotingV2 contract has several functions that are protected by the onlyOwner modifier:

The requestGovernanceAction function is also called by the propose function in the GovernorV2 contract. In order for this

contract-to-contract call to work with the onlyOwner restriction in place, the GovernorV2 contract must become the owner

of the VotingV2 contract. This action is performed by calling the Ownable base contract function transferOwnership(), as

demonstrated in the GovernorV2.js test:

This change of ownership means that the GovernorV2 contract also becomes the only valid caller for the setter functions in

the list above. In order to call any of these functions, a governance action must be proposed with Transaction data that will

invoke the target function, and subsequently executed via the executeProposal function.

The concern with this approach is that the voting system is potentially a single point of failure for administrative governance

actions. Taking the setGat function as an example, if voter participation becomes insufficient to meet the GAT threshold and

the GAT value needs to be lowered, a governance proposal to call setGat may be prevented from execution if the existing

GAT value prevents that vote from succeeding. Furthermore, future versions of the DVM with new administrative functions

may encounter the same problem where the current state of the Voting contract prevents a new corrective state from being

applied.

To address this issue, consider developing an out-of-band system that allows UMA governance to execute emergency

corrective actions for the voting system that do not rely on the voting system itself in order to succeed. For this approach, it

is recommended to use a multisig wallet to control access to the onlyOwner-protected functions. Also consider implement-

ing minimum and maximum values for each setter function that restrict governance changes to a safe range.

Update: Acknowledged. UMA acknowledges that emergency administration is a concern. However, due to the complexity

and severity of changes it cannot be addressed as part of this audit.

Lack of emergency administration

(inherited from Staker)

(inherited from Staker)

SMART CONTRACT AUDIT

Low Severity

Staker contract should be declared abstract

The Staker contract contains the following internal virtual functions:

Neither function is supposed to modify the contract state despite lacking a view identifier.

Further, the documentation of the inActiveReveal function states “This function should be overridden by the child contract”.

This suggests the Staker contract is designed to always be inherited by a child contract which overrides both virtual

functions, and never deployed as a standalone contract.

To enforce the intended design, prevent accidental deployments, and enhance the clarity of your code base, consider

declaring the Staker contract with the abstract keyword and removing the function body of inActiveReveal and

getStartingIndexForStaker in order to force their implementation by a derived contract. Additionally, consider adding the

view modifier to both function declarations.

Update: Fixed as of commit 8b3084adcd51fba381e733d05b75345fa3db5e4d in pull request #4068.

inActiveReveal which always returns false and is meant to return a boolean value that indicates whether or not the

voting system is currently in a reveal phase

getStartingIndexForStaker which always returns 0 and is meant to return a uint64 value indicating the index of the first

request from which slashing rewards and penalties apply to a new staker

Duplicate function execution

In the VotingV2 contract the overloaded function commitAndEmitEncryptedVote that is provided for backwards compati-

bility mistakenly calls commitVote twice: The first call to commitVote is performed directly within the function body on line

614, and an additional call is performed indirectly by the call to commitAndEmitEncryptedVote on line 616.

The duplicate call is an unnecessary gas expense and leads to an unintentional duplication of VoteCommitted event

emission.

Consider removing the direct call to commitVote from the function body.

Update: Fixed as of commit 4cd15fceb99ab03ad978f1dd01a3d0d146b6253d in pull request #4069.

Imprecise function name

In the DesignatedVotingV2 contract, the retrieveRewards function name suggests that the caller will gain possession of the

rewards; this assumption is further reinforced by the docstring’s description of the return value as “amount of rewards that

the user should receive”. However, instead of transferring rewards to the user, the retrieveRewards function restakes user’s

rewards.

To avoid confusion, consider renaming the retrieveRewards function to withdrawAndRestakeRewards or some other name

that more accurately describes its behavior.

Update: Fixed as of commit 284c6842ed05b13cfdc82cb3b5dd897507696e8f in pull request #4071.

SMART CONTRACT AUDIT

In the DesignatedVotingV2 contract, the retrieveRewards function name suggests that the caller will gain possession of the

rewards; this assumption is further reinforced by the docstring’s description of the return value as “amount of rewards that

the user should receive”. However, instead of transferring rewards to the user, the retrieveRewards function restakes user’s

rewards.

To avoid confusion, consider renaming the retrieveRewards function to withdrawAndRestakeRewards or some other name

that more accurately describes its behavior.

Update: Fixed as of commit 284c6842ed05b13cfdc82cb3b5dd897507696e8f in pull request #4071.

Imprecise function name

In order to submit a vote on a price request, the voter must construct an off-chain hash by encoding the following data in

order and then computing the keccak256 hash: price, salt, voterAddress, time, ancillaryData, currentRoundId, and identifier.

This can be seen in lines 559-563 of the VotingV2 contract’s revealVote function, where the contract constructs a reveal hash

that should match the one that was committed:

Incorrect documentation for voting commit hash

The structure of the commit hash is described in the docstrings of several functions within the DesignatedVotingV2 and

VotingV2 contracts. However, none of these docstrings appears to describe the format of the hash correctly:

In DesignatedVotingV2.sol:

In VotingV2.sol

line 56: The commitVote docstring describes the input hash as “the keccak256 hash of the price you want to

vote for and a random integer salt value”. This description omits the required voterAddress, time, ancillaryData,

currentRoundId, and identifier.

line 74: The commitAndEmitEncryptedVote docstring describes the input hash as “keccak256 hash of the price

you want to vote for and a int256 salt”. This description omits the required voterAddress, time, ancillaryData,

currentRoundId, and identifier.

line 91: The revealVote docstring describes the input price as “used along with the salt to produce the hash during

the commit phase”. This description is technically correct but implies these are the only two values required,

omitting voterAddress, time, ancillaryData, currentRoundId, and identifier.

line 92: The revealVote docstring describes the input salt as “used along with the price to produce the hash during

the commit phase”. This description is technically correct but implies these are the only two values required,

omitting voterAddress, time, ancillaryData, currentRoundId, and identifier.

line 488 : The commitVote docstring describes the input hash as “keccak256 hash of the price, salt, voter address,

time, current roundId, and identifier“. This description omits the required ancillaryData variable.

line 526: The revealVote docstring states that “The revealed price, salt, address, time, roundId, and identifier, must

hash to the latest hash“. This comment omits the requires ancillaryData variable.

SMART CONTRACT AUDIT

Furthermore, while the type of all the encoded values can be deduced by examining the input parameters and body of the

revealVote function, this type information is not explicitly provided to voters in the documentation of the commit functions

where the hash is inputted.

An incorrectly formatted commit hash can lead to a voter being slashed when the revealVote function attempts to re-create

the submitted hash and fails.

To avoid any misunderstanding about the hash encoding and the potential for unintentional wrong votes, consider carefully

documenting the exact format of the commit hash in all docstrings where it is referenced.

Update: Fixed as of commit 4f8798aeb90b1b3419f6e6da3ae1531ef07c058b in pull request #4072.

In the SpamGuardIdentifierLib contract, the function _constructIdentifier does not document or enforce the range of

allowed input values for its function parameter uint256 id.

Supplying a value of 10^11 or greater as parameter id will lead to silent unexpected behavior and potentially cause the

generation of duplicate identifiers, because the concatenation of the decimal string AdminIdentifierLib._uintToUtf8(id) and

the identifier “SpamDeletionProposal ” is limited to 32 bytes. While the current usage of SpamGuardIdentifierLib within

VotingV2 appears safe, this might change due to future modifications of the code base.

Consider both explicitly documenting the valid range of the input parameter and including a require statement that

enforces this range.

Update: Fixed as of commit 97ca84895e094a825c55c4b905e262c771a6c80a in pull request #4073 by reducing the input

to uint32.

Lack of input verification in library functions

Many of the functions, events, and variables within the codebase lack documentation.

Contracts that do not have a docstring:

Functions that do not have a docstring:

Missing documentation

SMART CONTRACT AUDIT

Docstrings that are incomplete:

Missing documentation hinder reviewers’ understanding of the code’s intention, which is fundamental to correctly assess

not only security, but also correctness. Additionally, docstrings improve readability and ease maintenance. They should

explicitly explain the purpose or intention of the functions, the scenarios under which they can fail, the roles allowed to call

them, the values returned and the events emitted.

Consider thoroughly documenting all functions (and their parameters) that are part of the contracts’ public API. Functions

that implement sensitive functionality, even if not public, should be clearly documented as well. When writing docstrings,

consider following the Ethereum Natural Specification Format (NatSpec). Also consider providing explanatory comments for

all events, structs, and storage variables that indicate their intended purpose.

Update: Partially fixed as of commit 3d68ad7fa471d4d763ab3ae9e6e5052bad1dce8e in pull request #4077. The following

functions still lack docstrings:

Many events and storage variables throughout the codebase also lack explanatory comments.

Finally, some useful documentation was recently removed:

Documentation for the NewProposal and ProposalExexcuted events in GovernorV2.sol

Documentation explaining the propose function’s public visibility in GovernorV2.sol

Missing error messages in require statements

Within the codebase, there are multiple require statements that lack error messages.

Consider including specific, informative error messages in require statements to improve overall code clarity and to facilitate

troubleshooting whenever a requirement is not satisfied.

Update: Fixed as of commit f29085860f7a32a480825e06b8f69c3456ea19dc in pull request #4074.

In VotingV2.sol

In VotingV2.sol

The require statement on line 552

The require statement on line 771

The require statement on line 810

The require statement on line 961

The require statement on line 993

The require statement on line 999

The require statement on line 1188

The require statement on line 1192

The require statement on line 810 The require statement on line 25

SMART CONTRACT AUDIT

The ProposerV2 and GovernorV2 contracts inherit the Testable contract, which is meant to allow setting and providing the

time via an additional external contract. During deployment to a production environment the inheritance of Testable is

meant to be kept while disabling the external time setter by passing the zero address to the testable constructor.

This testing methodology increases both the code size and the risk of deployment mistakes. Further, it allows multiple time

sources for different contracts within the project’s test cases, thereby increasing the likelihood of erroneous tests.

Consider replacing the Testable contract with equivalent functionality provided by the project’s test framework. For exam-

ple, consider using evm_setNextBlockTimestamp in Hardhat or vm.warp in Foundry.

If maintaining a dedicated function for time setting in the contract code is desired, consider reversing the order of inheri-

tance by implementing a virtual function getCurrentTime which returns block.timestamp in the production versions of

ProposerV2 and GovernorV2, and deriving specialized testing contracts that override getCurrentTime to implement the time

setting capabilities of Testable.

Update: Fixed as of commit 90b6634f6daebf02100f4a1b8aa6bca22bc64cc8 in pull request #4095.

Testcode in production

Throughout the codebase, the Solidity version used is ^0.8.0, which allows compilation with any version of Solidity from

0.8.0 up to the latest release. This may lead to unexpected behavior if the code is deployed with a different Solidity version

than was used during testing. Further, allowing old versions of Solidity leaves the code potentially vulnerable to known

security bugs which have already been patched. The official guidance is to always use the latest Solidity release when

deploying contracts. When a bug is discovered that affects a range of Solidity versions, the general policy of the Solidity

team is to only apply the fix to the latest release (i.e. no backporting of security updates).

Consider locking the version pragma to the same Solidity version used during development and testing. Also consider

setting this version to be the latest release.

Update: Partially fixed in commit 4f6cc15e0dd573095b8485e57ca91330bfc5bbdc within pull request #4075. The pragma

has been updated to 0.8.15 in most contracts, however Staker, SlashingLibrary and SpamGuardIdentifierLib retain an

unlocked pragma.

Unlocked Solidity version pragma

The DesignatedVotingV2Factory contract inherits from the Withdrawable contract, a base contract which provides the

ability to create a Withdraw role and assign it to one or more addresses to grant them the ability to withdraw ETH or ERC20

tokens from the contract by using the corresponding withdraw and withdrawErc20 functions.

The Withdrawable contract provides two functions for configuring this role, _createWithdrawRole and setWithdrawRole, and

the documentation for these functions indicates that one or the other must be called by the derived contract

(DesignatedVotingV2Factory in this case) in order for withdraws to function properly. However, the

DesignatedVotingV2Factory contract does not call either function, rendering the withdraw and withdrawErc20 functions

inoperable.

Given the intended purpose of the DesignatedVotingV2Factory contract, it does not appear that it requires the

Withdrawable feature. Consider removing the inheritance from Withdrawable and the corresponding import of

Withdrawable.sol.

Update: Fixed as of commit 88c79f4403d6f61715fab044c8933e8d90ca4366 in pull request #4078.

Withdraw role is not configured

SMART CONTRACT AUDIT

Notes & Additional Information

Inconsistent usage of reentrancy protection

In the GovernorV2 contract, the function executeProposal is protected against reentrancy by the checks-effects-interactions

pattern. In contrast, the ProposerV2 contract provides an additional layer of safety against re-entrancy attacks by importing

the Lockable contract and using its modifiers.

Consider inheriting from Lockable and using the nonReentrant modifier as an additional precaution.

Update: Fixed as of commit 32e27d1ca004a33a8f0ac256ccfc4f526666eeb0 in pull request #4080. The nonReentrant

modifier was applied to the executeProposal function as recommended. Additionally, the nonReentrant modifier was

also applied to the following functions:

In the VotingV2 contract, lines 1136-1140 in the _priceRequestResolved function perform the removal of an element from the

pendingPriceRequests array. The executeSpamDeletion function within the same contract re-implements this same code

on lines 1010-1016, with the only difference being that priceRequest has been replaced with priceRequests[requestId].

Consider moving this duplicated code into a new shared function.

Update: Fixed as of commit ce97e9124402996f77f2c8cf22c236f599de9456 in pull request #4081 by moving the duplicated

code into a new shared function named _removeRequestFromPendingPriceRequests.

Duplicate code

In the ProposerV2 contract, the function resolveProposal performs two subsequent calls to

AdminIdentifierLib._constructIdentifier(id) in line 91 and line 99 without storing the return value.

Consider performing only one call and capturing the return value to enhance the gas efficiency of your code.

Update: Fixed as of commit 4c116c98224c78ef866c9a8f960c4ac4a6c08ad2 in pull request #4082.

Duplicate computations

The ProposalV2 contract erroneously imports Voting.sol instead of VotingV2.sol.

Currently, all function signatures used within ProposalV2 are available in both Voting.sol and VotingV2.sol, thereby prevent-

ing any direct consequences.

Consider upgrading the import to VotingV2.sol for consistency.

Update: Fixed as of commit 0267ae4d344df061c9e392dc1cf862de82ff43d6 in pull request #4083 by replacing the

Voting.sol import with OracleAncillaryInterface.sol, which provides an interface for the hasPrice and getPrice voting

functions used by ProposerV2.sol.

Erroneous imports

SMART CONTRACT AUDIT

The withdrawRewards function in the Staker contract emits a WithdrawnRewards event to log the minting of rewards

tokens to the voter who called the function. However, the event is emitted outside the if block that checks for a non-zero

value of tokensToMint. If no rewards are minted, the WithdrawnRewards event will be logged even though no state change

occurred, wasting gas and possibly leading to confusion.

Consider only emitting the WithdrawnRewards event if tokensToMint is not zero.

Update: Fixed as of commit 703662231d4399a869e4ce990868cb2061f9e402 in pull request #4084.

WithdrawnRewards is emitted for zero rewards

In the ProposerV2 contract, the mutable state variables token, governor, and finder are only set once within the constructor.

In the Staker contract, the mutable state variable votingToken is only set once within the constructor. Consider declaring

these state variables as immutable to increase gas efficiency and enhance the clarity of your code base.

Update: Fixed as of commit 8be5f9c16f27e283f5cd5654e168a28d17b9d655 in pull request #4085.

Lack of immutable identifier

Many contracts rely on the Finder contract to lookup the addresses of other deployed UMA contracts. While most contracts

in the DVM implementation store a FinderInterface type in their finder storage variable, the Proposer and ProposerV2

contracts store a Finder type instead.

Additionally, some contracts declare their finder variable with private visibility, while others declare finder as a public

variable.

Consider making these declarations consistent within the codebase by uniformly applying the same contract type and

visibility to all instances of the finder storage variable.

Update: Partially fixed as of commit 2f5f667994c96612e95417de24f526b94a37b6c0 in pull request #4086. In the VotingV2

contract, the finder variable’s visibility was changed from private to public, but there is still an inconsistent application of

private and public visibility applied to this variable across ProposerV2 (public), GovernorV2 (private), DesignatedVotingV2

(private), and VotingV2 (public). Additionally, Proposer and ProposerV2 still use the Finder type.

Inconsistent declarations for finder variable

Throughout the codebase, a leading underscore is used to denote private and internal functions. However, several functions

that are marked internal do not follow this pattern. To avoid confusion, consider the following renaming suggestions:

Update: Fixed as of commit 59c103a5a378505203a1fc78146e494ed26905bb in pull request #4087.

Inconsistent function naming

In VotingV2.sol

inActiveReveal should be _inActiveReveal

In VotingV2.sol

applySlashToVoter should be _applySlashToVoter

getStartingIndexForStaker should be _getStartingIndexForStaker

SMART CONTRACT AUDIT

Within the VotingV2 contract, the PriceRequestAdded event applies the indexed keyword to the time variable but not the

requester variable. All other events within this contract that emit a time value do not apply indexing to it, and all other

events apply indexing to any addresses they emit, except this one.

To use indexing consistently, in the PriceRequestAdded event consider removing the indexed keyword from time and

adding it to requester.

Update: Fixed as of commit c6a8f7e088aefb5d5b5f77407e3ef400fe743d77 in pull request #4088.

Inconsistent event indexing

In the updateTrackersRange function, the indexTo parameter is the “last price request index to update the trackers for”. On

line 810 there is a check that indexTo <= priceRequestIds.length; at first glance this appears to be an off-by-one error

because array indexing starts at index 0 and the index is considered out of bounds if it is greater than or equal to the length

of the array.

However, in the _updateAccountSlashingTrackers function, the for-loop test condition ensures that the maximum index

value used to access the priceRequestIds array is indexTo - 1, thereby preventing any out-of-bounds access. Thus the logic

appears correct, but the name indexTo is misleading because it specifies the maximum element number to include in the

update, not the maximum index number.

To avoid confusion, consider renaming the indexTo variable, or update the documentation to clarify that this is not an array

index value.

Update: Acknowledged. UMA’s statement for this issue:

Misleading variable name

The code base contains multiple occurrences of misleading or incorrect documentation:

Update: Fixed as of commit 6a4bd53200b18d25379ce9082922ba0eea286619 in pull request #4090.

Misleading documentation

We chose to not implement any change for this note.

�

In the contract DesignatedVotingV2, the comment on line 21 “Is also permanently permissioned as the minter role”

appears to be a copy & paste error as a minting function is not part of the contract. Consider removing the comment.

In the contract SlashingLibrary, the docstring for calcSlashing on line 55 contains the erroneous expression “cross-chain

calls”. Consider altering it to “cross-contract calls”.

In the contract VotingV2, the comment on line 161 describes the spamDeletionProposals variable as “Maps round

numbers to the spam deletion request”. However, mapping indices to values is a property every array possesses.

Consider revising the comment to give a more contextual description of the identifier and its usage.

In the contract VotingV2, the docstring for getRoundEndTime on lines 716-719 appears to be a copy & paste error that

duplicates the docstring of the getCurrentRoundId function. Consider rewriting the docstring.

In the contract VotingV2, the comment on line 767 “This method is public because calldata structs are not currently

supported by solidity.” appears to be a copy & paste error, because no such struct is present in the function’s arguments.

Consider removing the comment.

SMART CONTRACT AUDIT

The following files do not contain an SPDX License identifier:

Missing license agreements can lead to legal disputes and undesired forms of code usage.

Consider adding a license identifier to all mentioned files.

Update: Fixed as of commit 2da561bcee2c72ae36eb4257f04c68537c6e2cd5 in pull request #4091.

Missing license identifier

The SpamGuardIdentifierLibs.sol and AdminIdentifierLib.sol files do not define a Solidity version pragma.

It is considered good practice to always specify the desired compiler version by using the Solidity version pragma. If the

contract contains non-trivial operations the resulting bytecode might differ between Solidity versions including security

relevant breaking changes and non-trivial bug fixes.

Consider defining Solidity version pragmas for all Solidity source files in this project.

Update: Fixed as of commit 2da561bcee2c72ae36eb4257f04c68537c6e2cd5 in pull request #4091.

Missing Solidity version pragma

In the DesignatedVotingV2 contract, both the signature of the retrieveRewards function and its docstring indicate that it

returns a value, but the function has no return statement.

Consider adding the missing rewardsMinted return value in order to make the retrieveRewards function behavior match its

public interface.

Update: Not fixed. The retreiveRewards function was renamed in pull request #4071 to withdrawAndRestakeRewards as

suggested in issue L03, but the function still does not return a value.

Function with return type does not return value

There is an inconsistent usage of named return variables across the codebase.

Occurrences of named return values are:

Consider adopting a consistent approach to return values by removing all named return variables.

Update: Fixed as of commit b62a8c90355b6e6c8643e65d354a9a253962073b in pull request #4092. For clarity, the UMA

team has retained the use of named return values only for functions that return multiple values. As a result, the

getResolvedPrice and calcSlashing functions were left unchanged.

Inconsistent use of named return variables

The getResolvedPrice function in the ResultComputationV2 contract

The calcSlashing function in the SlashingLibrary library

The _getIdentifierWhitelist function in the GovernorV2 contract

The _getIdentifierWhitelist function in the VotingV2 contract

The propose function in the ProposerV2 contract

SMART CONTRACT AUDIT

In VotingV2.sol:

To favor explicitness and readability, several parts of the contracts may benefit from better naming. Our suggestions are:

Update: Fixed as of commit bf04d1dce70eadbdeeff4760fca1cae2ecc3651c in pull request #4094. All naming suggestions

were implemented on the contracts in scope for this audit.

Naming issues

The following functions are currently marked with public visibility, but can be declared external because they are never

called internally by their own contracts or by child contracts:

Consider changing the visibility of these functions to external in order to reduce gas costs and clarify that these functions

will only ever be called by external contracts.

Update: Fixed as of commit 940ccda23259963687988c3cf7ae954d599980e0 in pull request #4102. Note that the

retrieveRewards function has been renamed to withdrawAndRestakeRewards.

Public functions can be marked as external

In the VotingV2 contract, consider renaming the constant ancillaryBytesLimit to ANCILLARY_BYTES_LIMIT.

In the VotingV2 contract, the deletedRequests mapping is used to optimize the processing of the priceRequestIds array

by skipping certain elements. The reason to skip an element could be deletion via the executeSpamDeletion function

or the detection of a rolled vote within the _updateAccountSlashingTrackers function. The name deletedRequests is

misleading as it only describes one of two origins for skips during request processing. Consider renaming the mapping

to indicate the purpose of efficient request processing, e.g. skippedRequestIndexes.

In the VotingV2Interface interface, consider renaming the constant NUM_PHASES_PLACEHOLDER to NUM_PHASES.

In DesignatedVotingV2.sol:

In GovernorV2.sol

In Staker.sol

In VotingV2.sol:

:

:

commitVote (backwards compatible version only)

getPrice (backwards compatible version only)

commitAndEmitEncryptedVote (backwards compatible version only)

getPriceRequestStatuses (backwards compatible version only)

requestPrice (backwards compatible version only)

revealVote (backwards compatible version only)

SMART CONTRACT AUDIT

Consider making the following changes to eliminate unnecessary code:

Update: Partially fixed as of commit 764d555eab7d58315561cd98904a06c24c980999 in pull request #4096. The changes

in Staker.sol have been fully addressed, while the change to VotingV2.sol remains unaddressed. Also note that pull

request #4096 inadvertently removes the immutable keyword that was added by pull request #4085 to the votingToken

variable declaration in Staker.sol.

Redundant code

In Staker.sol

In VotingV2.sol

line 26: The override keyword can be removed

line 115: The override keyword can be removed

line 151: The override keyword can be removed

line 178: The override keyword can be removed

line 199: The override keyword can be removed

line 209: (tokensToMint) can be changed to tokensToMint

lines 1005-1006: The uint256(i) casts can be changed to i

Within the Staking contract, there are two functions that allow users to stake and unstake a specific amount of UMA tokens:

stake and requestUnstake. Both functions have an amount parameter that specifies how many tokens to stake or unstake,

but neither function checks whether this amount is zero. If the caller specifies an amount value of 0 for either function, all of

the logic is still executed, wasting the user’s gas.

In both stake and requestUnstake, consider adding a check that amount is a non-zero value before proceeding.

Update: Acknowledged. UMA’s statement for this issue:

Amount to stake or unstake can be zero

Within the SlashingLibrary contract, the functions calcWrongVoteSlashPerToken and calcNoVoteSlashPerToken both return

a hard-coded value of 1600000000000000. Numeric literals with a large number of digits are more difficult to interpret,

requiring the reader or reviewer to count the number of digits to ensure correctness.

Solidity supports scientific notation representation for large values. Consider replacing these integer values with their more

compact equivalent representation 1.6e15.

Update: Fixed as of commit 1d11705161a9d2d49943eace26ab6239886c21e8 in pull request #4097.

Too many digits in numeric literals

We don’t have any issue with a user unstaking 0, which is a no op.

SMART CONTRACT AUDIT

Consider addressing the following typographical errors:

Typographical errors

In DesignatedVotingV2.sol

line 54: “EG” should be “E.g.”

line 71: “Eg:” should be “E.g.”

line 72: “of for the price request” should be “of the price request”

line 75: “voters” should be “voter’s”

line 89: “EG” should be “E.g.”

In GovernorV2.sol:

line 98: “an an array” should be “an array”

In ProposerV2.sol

line 115: “system, itself” should be “system itself”

In SlashingLibrary.sol

line 59: Remove space before “wrongVoteSlashPerToken”

In Staker.sol:

line 13: “prorate” should be “pro rata”

line 53: “voterPendingUnStake” should be “voterPendingUnstake”

line 91: “prorate” should be “pro rata”

line 93: Remove erroneous comment line

line 111: “a active reveal” should be “an active reveal”

line 175-176: Remove the incomplete sentence that begins with “Note that this…”

line 230: “prorate” should be “pro rata”

line 231: “prorate” should be “pro rata”

In VoteTimingV2.sol

line 31: “roundID” should be “round ID”

line 44: “round Id” should be “round ID” (or roundId)

In VotingV2.sol

line 26: “UMA’s DVM mechanism” should be “UMA’s DVM” (mechanism is redundant)

line 52: “UINT_MAX” should be “UINT64_MAX”

line 59: “uint56” should be “uint64”

line 295: “eg” should be “E.g.”

line 311: “eg” should be “E.g.”

line 327: “eg” should be “E.g.”

line 391: “eg” should be “E.g.”

line 413: “eg” should be “E.g.”

line 485: “EG” should be “E.g.”

line 528: “EG” should be “E.g.”

line 585: “commits” should be “Commits”

line 588: “Eg:” should be “E.g.”

line 589: “of for the price request” should be “of the price request”

line 592: “voters” should be “voter’s”

line 621: “actors” should be “actions”

line 630: “for delegator” should be “for the delegator”

line 631: “two way” should be “two-way”

line 632: “of the delegate” should be “of the delegator”

line 656: “of type PendingRequest” should be “of type PendingRequestAncillary“

line 866: “cant” should be “can’t”

SMART CONTRACT AUDIT

In VotingV2.sol

line 946: “diregarded” should be “disregarded”

In packages/core/README.md

line 92: “optimsim-up” should be “optimism-up”

line 1: “Uniswaps’s” should be “Uniswap’s”

line 959: “sequently” should be “sequential”
line 1134: “pending request” should be “pending requests”

Additionally, some errors were found in out-of-scope files:

In packages/core/README.md

line 2300: “i.e” should be “i.e.”

line 2481: “cant” should be “can’t”

line 2482: “cant” should be “can’t”

line 2630: “Dont” should be “Don’t”
line 2708: “cant” should be “cant”
line 2815: “dont” should be “don’t”
line 2857: “i.e” should be “i.e.”

In packages/core/test/oracle/VotingV2.js

Update: Fixed as of commit 69e9574f3ffb3b9085e58b731862c92728134710 in pull request #4098. All typos were corrected

except for those identified in the VotingV2.js file, which was out of scope.

The GovernorV2 contract imports the OpenZeppelin SafeMath library and uses the library’s sub function on line 144. Solidity

version 0.8.0 introduced default underflow/overflow checks on all arithmetic operations. Since the GovernorV2 contract

version is ^0.8.0, use of the SafeMath library is redundant in this case.

Consider removing the SafeMath.sol import from GovernorV2 and replacing the sub function with the - operator.

Update: Fixed as of commit 9714b2df60965edd99bec6cb674f01f6d5fb141b in pull request #4099.

Unnecessary use of SafeMath library

The SlashingLibrary contract defines a standard interface for the calcWrongVoteSlashPerToken,

calcWrongVoteSlashPerTokenGovernance, and calcNoVoteSlashPerToken functions. Each function accepts the following

input parameters: totalStaked, totalVotes, and totalCorrectVotes. These variables are not used at present but are intended

for future use. However, because they are not used, the Solidity compiler will raise an “Unused function parameter” warning

for each instance.

Although the unused parameters are harmless in this case, the goal should be to have zero compiler warnings, in order to

prevent other warnings mixed in with these from going unnoticed during compilation. Consider adding the following block

of no-op code to the body of each of the aforementioned functions in order to suppress the compiler warnings:

This code would then be removed at a later date when these variables are used to perform slashing calculations.

Update: Acknowledged. UMA’s statement for this issue:

Unused function parameters

The following files are imported but not used:

To improve readability and avoid confusion, consider removing the unused imports.

Update: Fixed as of commit 160c985d9560b78d41b2998d2ca40f4c1ef297b4 in pull request #4100 and commit

0f9bdee0d0584254a93c48fddf3987e2d8559a6e in pull request #4095.

Unused imports

One critical and one high severity issue were found and subsequently resolved. Some changes were proposed to follow best

practices and reduce potential attack surface. The supporting usage of a monitoring system and the addition of emergency

administration functionality was recommended.

Conclusions

Within VotingV2.sol the state variable spamDeletionProposalBond lacks an explicitly declared visibility.

For clarity, consider always explicitly declaring the visibility of variables, even when the default visibility matches the

intended visibility.

Update: Fixed as of commit e3ae35386ddaa674145816c80a11b2117fff44ad in pull request #4101.

State variable visibility not explicitly declared

In the Staker contract, the Testable.sol contract

In the VotingV2 contract, the AncillaryData.sol library

In the VotingV2Interface contract, the FixedPoint.sol library

SMART CONTRACT AUDIT

